Extra tyrosine in the carbohydrate-binding module of Irpex lacteus Xyn10B enhances its cellulose-binding ability.

نویسندگان

  • Hiroto Nishijima
  • Kouichi Nozaki
  • Masahiro Mizuno
  • Tsutomu Arai
  • Yoshihiko Amano
چکیده

The xylanase (Xyn10B) that strongly adsorbs on microcrystalline cellulose was isolated from Driselase. The Xyn10B contains a Carbohydrate-binding module family 1 (CBM1) (IrpCBMXyn10B) at N-terminus. The canonical essential aromatic residues required for cellulose binding were conserved in IrpCBMXyn10B; however, its adsorption ability was markedly higher than that typically observed for the CBM1 of an endoglucanase from Trametes hirsuta (ThCBMEG1). An analysis of the CBM-GFP fusion proteins revealed that the binding capacity to cellulose (7.8 μmol/g) and distribution coefficient (2.0 L/μmol) of IrpCBMXyn10B-GFP were twofold higher than those of ThCBMEG1-GFP (3.4 μmol/g and 1.2 L/μmol, respectively), used as a reference structure. Besides the canonical aromatic residues (W24-Y50-Y51) of typical CBM1-containing proteins, IrpCBMXyn10B had an additional aromatic residue (Y52). The mutation of Y52 to Ser (IrpCBMY52S-GFP) reduced these adsorption parameters to 4.4 μmol/g and 1.5 L/μmol, which were similar to those of ThCBMEG1-GFP. These results indicate that Y52 plays a crucial role in strong cellulose binding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of family 22 carbohydrate-binding module on the thermostability of Xyn10B catalytic module from Clostridium stercorarium.

A family 22 carbohydrate-binding module (CBM22) from Clostridium stercorarium Xylanase10B raised the optimum temperature of the xylanase, but in the remaining activity of heating test, apparently the catalytic module alone showed higher remaining activity. Differential scanning calorimetry showed that CBM22 conferred resistance to thermal unfolding of the enzyme and prevented the enzyme from re...

متن کامل

Characteristics of a cluster of xylanase genes in Fibrobacter succinogenes S85.

Xylanase genes xyn10D, xyn10E, and xyn10B, located sequentially on the Fibrobacter succinogenes S85 chromosome, were separately cloned and their properties characterized. Analysis of the sequences documented that xylanases Xyn10D, Xyn10E, and Xyn10B each consist of an N-terminal catalytic domain (glycosyl hydrolase family 10) and a C-terminal carbohydrate-binding module (CBM, family 6) connecte...

متن کامل

Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses

Background Irpex lacteus is one of the most potent white rot fungi for biological pretreatment of lignocellulose for second biofuel production. To elucidate the underlying molecular mechanism involved in lignocellulose deconstruction, genomic and transcriptomic analyses were carried out for I. lacteus CD2 grown in submerged fermentation using ball-milled corn stover as the carbon source. Resu...

متن کامل

Biodegradation of 2,4,6-Trinitrotoluene by White-Rot Fungus Irpex lacteus

White-rot fungus Irpex lacteus degraded TNT significantly in proportion to the culture time. After 48 h incubation, about 95% of TNT was degraded. Two reduced metabolites were identified as 4-amino-2,6-dinitrotoluene (4-ADNT) and 2-amino-4,6-dinitrotoluene (2-ADNT) which was further degraded.

متن کامل

Differential proteomic analysis of the secretome of Irpex lacteus and other white-rot fungi during wheat straw pretreatment

BACKGROUND Identifying new high-performance enzymes or enzyme complexes to enhance biomass degradation is the key for the development of cost-effective processes for ethanol production. Irpex lacteus is an efficient microorganism for wheat straw pretreatment, yielding easily hydrolysable products with high sugar content. Thus, this fungus was selected to investigate the enzymatic system involve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioscience, biotechnology, and biochemistry

دوره 79 5  شماره 

صفحات  -

تاریخ انتشار 2015